Synthesis and biology of oligoethylene glycol linked naphthoxylosides.

نویسندگان

  • Karin Holmqvist
  • Andrea Persson
  • Richard Johnsson
  • Johanna Löfgren
  • Katrin Mani
  • Ulf Ellervik
چکیده

Proteoglycans (PGs) are important macromolecules in mammalian cells, consisting of a core protein substituted with carbohydrate chains, known as glycosaminoglycans (GAGs). Simple xylosides carrying hydrophobic aglycons can enter cells and act as primers for GAG chain synthesis, independent of the core protein. Previously it has been shown that aromatic aglycons can be separated from the sugar residue by short linkers without affecting the GAG priming ability. To further investigate the effects of the xylose-aglycon distance on the GAG priming ability, we have synthesized xyloside derivatives with 2-naphthyl and 2-(6-hydroxynaphthyl) moieties connected to xylose, directly, via a methylene bridge, or with oligoethylene glycol linkers of three different lengths. The GAG priming ability and the antiproliferative activity of the xylosides, as well as the composition of the xyloside-primed GAG chains were investigated in a matched pair of human breast fibroblasts and human breast carcinoma cells. An increase of the xylose-aglycon distance from 0.24 to 0.37 nm resulted in an increased GAG priming ability in both cell lines. Further increase of the xylose-aglycon distance did not result in any pronounced effects. We speculate that by increasing the xylose-aglycon distance, and thereby the surface area of the xyloside, to a certain level would make it more accessible for enzymes involved in the GAG synthesis. The compositions of the primed GAG chains varied with different xylosides, independent of the xylose-aglycon distance, probably due to various affinities for enzymes and/or different cellular uptake. Furthermore, no correlations between the antiproliferative activities, the xylose-aglycon distances, and the amounts or compositions of the GAG chains were detected suggesting involvement of other factors such as fine structure of the GAG chains, effects on endogenous PG synthesis, or other unknown factors for the antiproliferative activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reactive electrospinning of degradable poly(oligoethylene glycol methacrylate)-based nanofibrous hydrogel networks.

A direct, all-aqueous electrospinning method for fabricating degradable nanofibrous hydrogel networks is reported in which hydrazide and aldehyde-functionalized poly(oligoethylene glycol methacrylate) (POEGMA) polymers are simultaneously electrospun and cross-linked. The resulting networks are spatially well-defined, mechanically stable (both dry and wet), and offer extremely fast swelling resp...

متن کامل

Unexpected enhancement in biological activity of a GPCR ligand induced by an oligoethylene glycol substituent.

Polyethylene glycol (PEG) is widely used, and many biologically active molecules are modified with oligoethylene glycol substituents to enhance their half-lives in circulation. The pervasive use of PEG substituents is partly due to their presumed inertness. Our investigation of formyl peptide receptor (FPR)-mediated chemotaxis reveals that oligoethylene glycol substitution can enhance the abili...

متن کامل

Injectable and tunable poly(ethylene glycol) analogue hydrogels based on poly(oligoethylene glycol methacrylate).

Injectable PEG-analogue hydrogels based on poly(oligoethylene glycol methacrylate) have been developed based on complementary hydrazide and aldehyde reactive linear polymer precursors. These hydrogels display the desired biological properties of PEG, form covalent networks in situ following injection, and are easily modulated for improved control over their functionality and physiochemical prop...

متن کامل

Polymeric model systems for flavoenzyme activity: towards synthetic flavoenzymes.

We report the synthesis of a water-soluble flavin polymer using ATRP, whereby the oligoethylene glycol backbone provides both a local hydrophobic environment and redox tuning of the flavin moiety typical of flavoenzyme prototypes.

متن کامل

Enzymatically Triggered, Isothermally Responsive Polymers: Reprogramming Poly(oligoethylene glycols) To Respond to Phosphatase.

Polymers which can respond to externally applied stimuli have found much application in the biomedical field due to their (reversible) coil-globule transitions. Polymers displaying a lower critical solution temperature are the most commonly used, but for blood-borne (i.e., soluble) biomedical applications the application of heat is not always possible, nor practical. Here we report the design a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioorganic & medicinal chemistry

دوره 21 11  شماره 

صفحات  -

تاریخ انتشار 2013